数理 (23) 略解

数理1

- [1] 期待値と分散は定義により容易に求められる。一方、 $S_n=X_1+\cdots+X_n$ より $E[S_n]=n\lambda,\ V[S_n]=n\lambda$ となる。
- [2] $a_i = n i + 1_{\circ}$
- [3] $E[W_n] = \frac{1}{2}n(n+1)\lambda$, $V[W_n] = \frac{1}{6}n(n+1)(2n+1)\lambda$
- [4] $\tilde{\lambda} = \frac{2}{n(n+1)} W_n$ は λ の不偏推定量となり、分散は $V[\tilde{\lambda}] = \frac{2(2n+1)}{3n(n+1)} \lambda$ となる。
- [5] チェビシェフの不等式より、任意の c>0 に対して

$$P(|\tilde{\lambda} - \lambda| \ge c) \le \frac{V[\tilde{\lambda}]}{c^2} \to 0 \ (n \to \infty)$$

となるので、 $\tilde{\lambda}$ は λ の一致推定量である。

[6] 漸近相対効率は

$$\lim_{n\to\infty} \frac{V[\hat{\lambda}]}{V[\tilde{\lambda}]} = \lim_{n\to\infty} \frac{\lambda/n}{2(2n+1)\lambda/\{3n(n+1)\}} = \frac{3}{4}$$

である。

[1] k=1,2,3 に対する確率密度関数はそれぞれ $y \ge 0$ の範囲で

$$k=1: f_1(y) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{y}} e^{-y/2}$$

$$k=2$$
: $f_2(y) = \frac{1}{2}e^{-y/2}$

$$k=3: f_3(y) = \frac{1}{\sqrt{2\pi}} \sqrt{y} e^{-y/2}$$

であり,グラフは図1のようである。

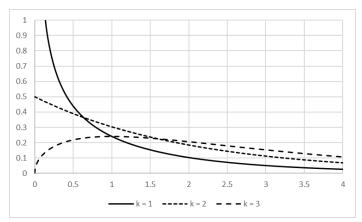


図1:カイ二乗分布の確率密度関数 (k=1,2,3)

[2] (Z, Y_1) &

$$\begin{cases} S = Y_1 \\ X = Z / \sqrt{Y_1} \end{cases}$$

と変数変換すると同時確率密度関数は、 $f_{X,S}(x,s)=rac{1}{2\pi}\exp[-(1+x^2)s/2]$ となるので、 これを s で積分して $g(x)=rac{1}{\pi(1+x^2)}$ を得る。

- [3] $h(w) = 1/\pi$ となる $(-\pi/2 < w < \pi/2)$ 。これは区間 $(-\pi/2, \pi/2)$ 上の一様分布である。
- [4] 区間 (0,1) 上の一様分布に従う乱数 U_1,U_2,\ldots を $\pi(U_1-0.5),\pi(U_2-0.5),\ldots$ とし、 $X_1=\tan\{\pi(U_1-0.5)\},~X_2=\tan\{\pi(U_2-0.5)\},\ldots$ とすればよい。

- [1] $E[X] = 1/\lambda_{\circ}$
- [2] $M_X(t) = \frac{\lambda}{\lambda t} \quad (t < \lambda)$
- [3] $E[X_w] = \frac{1}{\lambda h}$ $(h < \lambda)$ より $0 < h < \lambda$ に対して $E[X_w] = \frac{1}{\lambda h} > \frac{1}{\lambda} = E[X]$ を得る。
- [4] X_W の r 次モーメントは、定義により $E[X_W^{\ r}] = \frac{M_X^{(r)}(h)}{M_X(h)}$ となる。
- [5] $E[X_W] = \frac{M_X^{(1)}(h)}{M_X(h)} \text{ であり}, \ \frac{d}{dh} \bigg(\frac{M_X^{(1)}(h)}{M_X(h)} \bigg) = V[X_W] \geq 0 \text{ より}, \ \frac{M_X^{(1)}(h)}{M_X(h)} \text{ は } h \text{ に関して}$ 単調増加である。よって,h < 0 のとき $E[X_W] \leq E[X]$ が成り立ち,h > 0 のときは $E[X_W] \geq E[X]$ が成り立つ。

- [1] 積分計算により E[W] = k であり, k > 2 として E[1/W] = 1/(k-2) となる。
- [2] W_1 および W_2 の各自由度は n-p および p である。また、 W_1 と W_2 は互いに独立である。
- [3] $E_{\mathbf{Z}|\mathbf{Y}}[\Delta(\mathbf{Z})|\mathbf{Y}] = \sigma^2(n+W_2)$ となる。

- [1] 各 i に対し $E[U_i] = \overline{z}$ より $E[\overline{U}] = \overline{z}$ である。分散は、 $V[U_i] = \sigma_N^2$ および $Cov[U_i, U_j] = -\frac{\sigma_N^2}{N-1}$ より、 $V[\overline{U}] = \frac{N-m}{N-1} \cdot \frac{\sigma_N^2}{m}$ を得る。
- [2] $D = \overline{U} \overline{V} = \frac{m+n}{n} (\overline{U} \overline{z}) \quad$ および $N\sigma_N^2 (N-2)\tilde{S}^2 = \frac{mn}{m+n} D^2$ である。
- [3] $E[D] = \frac{m+n}{m} E[\overline{U} \overline{z}] = 0$ であり、 $V[D] = \frac{N^2}{mn(N-1)} \sigma_N^2$ となる。
- [4] $ilde{W}$ を変形すると $ilde{W}=rac{ar{U}-E[ar{U}]}{\sqrt{V[ar{U}]}}$ となるので、 $ilde{W}$ は近似的に N(0,1) に従う。
- [5] $ilde{W} = \sqrt{\frac{N-1}{N-2+ ilde{T}^2}} \cdot ilde{T}$ である。 $ilde{W}$ は N(0,1) に従うので,有意水準 α の場合の検定の乗却域は, $z_{\alpha/2}$ を N(0,1) の上側 100α %点として,

$$\alpha = P(|\tilde{W}| > z_{\alpha/2}) = P\left(|\tilde{T}| > \sqrt{\frac{N-2}{N-1-z_{\alpha/2}^{2}}} \cdot z_{\alpha/2}\right)$$

となる。 $z_{\alpha 2}$ の係数部分は N が大きいとき近似的に 1 であることから, \tilde{W} に基づく検定は T に基づく検定とほぼ同等である